Sunday, February 28, 2010

What is LA??



Lactococcus is a genus of lactic acid bacteria that were formerly included in the genus Streptococcus Group N1. They are known as homofermentors meaning that they produce a single product, lactic acid in this case, as the major or only product of glucose fermentation. Their homofermentative character can be altered by adjusting cultural conditions like pH, glucose concentration, and nutrient limitation. They are gram-positive, catalase negative, non-motile cocci that are found singly, in pairs, or in chains. The genus contains strains known to grow at or below 7˚C.

Five species of Lactococcus are currently recognized along with three subspecies. They are:

L. lactis
L. lactis subsp. lactis
L. lactis subsp. cremoris
L. lactis subsp. hordniae
L. garvieae
L. plantarum
L. raffinolactis
L. piscium

These organisms are commonly used in the dairy industry in the manufacture of fermented dairy products like cheeses. They can be used in single strain starter cultures, or in mixed strain cultures with other lactic acid bacteria such as Lactobacillus and Streptococcus. Special interest is placed on the study of L. lactis subsp. lactis and L. lactis subsp. cremoris as they are the strains used as starter cultures in industrial dairy fermentations. Their main purpose in dairy production is the rapid acidification of milk; this causes a drop in the pH of the fermented product which prevents the growth of spoilage bacteria. The bacteria also play a role in the flavor of the final product. Lactococci are currently being used in the biotechnology industry. They are easily grown at industrial scale up on cheap whey based media. As food grade bacteria they are used in the production of foreign proteins that are applied to the food industry.

Lactococcus lactis is a Gram-positive bacteria used extensively in the production of buttermilk and cheese. L. lactis are cocci that group in pairs and short chains, and depending on growth conditions appears ovoid with typically 0.5 - 1.5 µm in length. L. lactis do not produce spores (non-sporulating) and are not motile (non-motile). They have a homo-fermentative metabolism and have been reported to produce exclusively L(+) lactic acid.However, reported that D(-) lactic acid can be produced when cultured at low pH. The capability to produce lactic acid is one of the reasons why Lactococcus lactis is one of the most important micro-organisms involved in the dairy industry. Generally, it has been considered as an opportunistic pathogen. Even though, the number of clinical cases associated with infections by these microorganisms has increased in the last decade in both humans and animals. L. lactis is a bacterium which has a crucial importance for manufacturing dairy products such as buttermilk and cheeses. When L. lactis ssp. lactis is added to milk, the bacterium uses enzymes to produce energy molecules, called ATP, from lactose.The byproduct of ATP energy production is lactic acid. The lactic acid produced by the bacterium curdles the milk that then separates to form curds, which are used to produce cheese.

Other uses that have been reported for this bacteria include the production of pickled vegetables, beer or wine, some breads and other fermented food-stuffs such as soymilk kefir, buttermilk, .... Nowadays, researchers believe that understanding the physiology and genetic make-up of this bacterium will provide food manufacturers as well as the pharmaceutical industry with invaluable benefits

Lactococcus lactis
Scientific classification
Kingdom: Bacteria
Division: Firmicutes
Class: Bacilli
Order: Lactobacillales
Family: Streptococcaceae
Genus: Lactococcus
Species: L. lactis
Binomial name
Lactococcus lactis
(Lister 1873)
Schleifer et al. 1986
Subspecies

L. l. cremoris
L. l. hordniae
L. l. lactis
L. l. lactis bv. diacetylactis

Protein Data Bank

The Protein Data Bank (PDB) is a repository for the 3-D structural data of large biological molecules, such as proteins and nucleic acids. (See also crystallographic database). The data, typically obtained by X-ray crystallography or NMR spectroscopy and submitted by biologists and biochemists from around the world, can be accessed at no charge on the internet. The PDB is overseen by an organization called the Worldwide Protein Data Bank, wwPDB.

The PDB is a key resource in areas of structural biology, such as structural genomics. Most major scientific journals, and some funding agencies, such as the NIH in the USA, now require scientists to submit their structure data to the PDB. If the contents of the PDB are thought of as primary data, then there are hundreds of derived (i.e., secondary) databases that categorize the data differently. For example, both SCOP and CATH categorize structures according to type of structure and assumed evolutionary relations; GO categorize structures based on genes.

History

The PDB originated as a grassroots effort.In 1971, Walter Hamilton of the Brookhaven National Laboratory agreed to set up the data bank at Brookhaven. Upon Hamilton's death in 1973, Tom Koeztle took over direction of the PDB. In January 1994, Joel Sussman was appointed head of the PDB. In October 1998,the PDB was transferred to the Research Collaboratory for Structural Bioinformatics (RCSB); the transfer was completed in June 1999. The new director was Helen M. Berman of Rutgers University (one of the member institutions of the RCSB). In 2003, with the formation of the wwPDB, the PDB became an international organization. Each of the four members of wwPDB can act as deposition, data processing and distribution centers for PDB data. The data processing refers to the fact that wwPDB staff review and annotates each submitted entry. The data are then automatically checked for plausibility.

The PDB database is updated weekly (on Tuesday). Likewise, the PDB Holdings List is also updated weekly. As of 23 February 2010 (2010 -02-23)[update], the breakdown of current holdings was as follows:

Experimental
Method Proteins Nucleic Acids Protein/Nucleic Acid
complexes Other Total
X-ray diffraction 51291 1193 2368 17 54869
NMR 7206 891 152 7 8256
Electron microscopy 184 17 71 0 272
Hybrid 18 1 1 1 21
Other 120 4 4 13 141
Total: 58819 2106 2596 38 63559

44,233 structures in the PDB have a structure factor file.
5,546 structures have an NMR restraint file.

These data show that most structures are determined by X-ray diffraction, but about 15% of structures are now determined by protein NMR, and a few are even determined by cryo-electron microscopy.

The significance of the structure factor files, mentioned above, is that, for PDB structures determined by X-ray diffraction that have a structure file, the electron density map may be viewed. The data of such structures is stored on the "electron density server", where the electron maps can be viewed.

In the past, the number of structures in the PDB has grown nearly exponentially. In 2007, 7263 structures were added. However, in 2008, only 7073 structures were added, so the rate of production of structures has appeared to start to decrease. And yet, in 2009, 7448 structures were added, the highest ever for any year.

The file format initially used by the PDB was called the PDB file format. This original format was restricted by the width of computer punch cards to 80 characters per line. Around 1996, the "macromolecular Crystallographic Information file" format, mmCIF, started to be phased in. An XML version of this format, called PDBML, was described in 2005.The structure files can be downloaded in any of these three formats. In fact, individual files are easily downloaded into graphics packages using web addresses:

* For PDB format files, use, e.g., http://www.pdb.org/pdb/files/4hhb.pdb.gz
* For PDBML (XML) files, use, e.g., http://www.pdb.org/pdb/files/4hhb.xml.gz

The "4hhb" is the PDB identifier. Each structure published in PDB receives a four-character alphanumeric identifier, its PDB ID. (This cannot be used as an identifier for biomolecules, because often several structures for the same molecule—in different environments or conformations—are contained in PDB with different PDB IDs.)

HTRA




Maintenance of a protein in a properly folded state is important for many of its functions. Cells therefore contain molecules, such as chaperones and proteases, to refold or rid themselves of misfolded and aggregated proteins. Chaperones recognize and bind proteins in nonnative states by interacting with their surface-exposed hydrophobic groups, holding the proteins in such a way that they may refold. Proteins that cannot be recovered are targeted for proteolytic destruction. Although chaperones and proteases carry out antagonistic functions, the substrates that they bind and act on are similar, and it is likely that they are coordinately regulated. For example, the bacterial proteins ClpP and ClpA (or X) form heterooligomeric complexes containing both protease (ClpP) and chaperone (ClpA or X) functions . Another remarkable example is the HtrA (high-temperature requirement) family of stress-induced proteins, where both activities exist within a single protein and the switch from protease to chaperone is regulated in a temperature-dependent manner.

In multicellular organisms, programmed cell death (apoptosis) is used to remove excess, damaged, or infected cells. The key effector proteases of apoptosis are caspases which remain in a latent form in healthy cells. While caspase activation can be regulated by members of the Bcl-2 family, once activated, caspases can be controlled by binding directly to members of the inhibitor of apoptosis (IAP) family of proteins. The IAPs can themselves be antagonized by proapoptotic proteins that bind to them, displacing the active caspases. For example, upon receipt of an apoptotic signal, the mitochondrial protein DIABLO/Smac is released into the cytosol where it binds to XIAP, thereby displacing processed caspases 9 and 3. DIABLO contains a conserved N-terminal motif (AVPI), similar to that found in Drosophila IAP antagonists, which is required for binding to IAPs. Recently, screens for other regulators of IAPs identified another mitochondrial protein, HtrA2, a mammalian protein that bears the serine protease and PDZ domain of its bacterial counterpart [3, 4, 5, 6 and 7]. Upon release from the mitochondrial intermembrane space, HtrA2 interacts with XIAP in a similar way to DIABLO. However, for maximal induction of apoptosis, overexpressed HtrA2 requires both its protease activity and its AVP amino terminus.

So how can HtrA act as a protease, chaperone, and regulator of apoptosis? Two recent papers describing the crystal structures of the bacterial periplasmic protein, DegP [8] and the mammalian homolog, HtrA2 [9] go some way toward elucidating the mechanism by which they might function. As predicted, each monomer of the E. coli HtrA, DegP, consists of three distinct domains, an N-terminal protease domain and two C-terminal PDZ domains. Three monomers come together, mediated by extensive contacts between the protease domains to form a trimeric ring, and this then forms a hexameric structure by staggered association of two trimers (see Figure 1, panel A). Two distinct hexameric molecules of DegP are apparent in the asymmetric unit, one in an “open form” and the other in a “closed form.” The primary contacts between the trimers are three pillars that are formed by interaction of the two N-terminal β strands from opposing monomers (see Figure, panel A). In the closed form shown in the figure, an additional set of interactions between the trimers occurs via the PDZ domains. However, these interactions involve flexible parts of the structure, and the hexamer is best described as a “dimer of trimers.”



















The molecules were aligned on the protease domain. The left and right images are related by a 90° rotation about the horizontal axis for both molecules.

(A) Structure of the “closed” DegP hexamer (Protein Data Bank code 1KY9). One trimer (orange, yellow, and gray) is shown as a surface representation while in the second trimer, two monomers (green and blue) are shown as a surface and the third as a ribbon. The protease domain (red), PDZ1 domain (purple), and PDZ2 (light pink) are colored separately; the catalytic serine is obscured in these views. The pillar is labeled P and the N and C termini are labeled N and C, respectively.

(B) Structure of the HtrA2 trimer (Protein Data Bank code 1LCY). Two monomers are shown as a surface representation. The third monomer is shown as a ribbon. The protease domain (red) and the PDZ domain (light pink) are colored separately; the site of the catalytic serine is shown (S) and the N and C termini are labeled accordingly.


In the structure of DegP solved by Krojer et al. [8], the critical serine in the catalytic triad was mutated to alanine in order to prevent autoproteolysis, and the structure was solved at 4°C to lock it in the chaperone conformation. As a result, although the general location of the active site is similar to that observed for other serine proteases, the catalytic triad is in an inactive conformation and access to the active site is precluded by a loop from an opposing monomer. A large conformational change is required before substrates can access the active site. This conformational change may be regulated in part by the PDZ domains. The PDZ domains are highly flexible and appear to act as gatekeepers of the catalytic site. In the chaperone conformation solved here, it is expected that partially unfolded substrates will be fed into the central cavity through lateral pores that occur in the open conformation. Once inside, substrates will interact with hydrophobic residues in the protease domain. Unlike other chaperones, ATP does not drive binding and release, and the mechanism by which this cycle is regulated in DegP is unknown. Perhaps rigid body movement of the PDZ domains is involved.

Shi and his colleagues have solved the crystal structures of a number of important proteins involved in apoptosis in recent years. In the latest paper, by Li et al. [9], they now report the structure of mature HtrA2, the mammalian counterpart of DegP. As predicted, this structure is homologous to that of bacterial HtrAs; in particular, the protease domain is highly conserved and the catalytic triad has a similar position between the two lobes of the protease domain (see Figure, panel B). Furthermore, access to the catalytic site is blocked by the PDZ domain and like DegP, the structure solved here is inactive. The regions of HtrA2 involved in trimer formation also adopt a very similar conformation to that seen in DegP, and the trimeric structure is conserved (see Figure, panel B). However, HtrA2 has several deletions when compared to DegP; for example, the N-terminal β strands that form the pillars in DegP are truncated and the first PDZ domain has been deleted. As a consequence of these deletions, HtrA2 only assembles into trimers and does not form hexamers. What is the consequence of no longer being a hexamer? The buried nature of the protease active site in DegP is likely to be important for its duality of function. Does loss of an enclosed cage mean that HtrA2 can no longer function as a chaperone? This is an important question that will require further studies. Other features of the HtrA2 structure are more revealing. For instance, the N terminus of HtrA2 is accessible from the top of the trimer, and if HtrA2 were released from the mitochondria it would be free to interact with IAPs in a manner similar to that seen for DIABLO [10], although it is uncertain whether all HtrA2 monomers would interact with IAPs. The structure of the PDZ domain in HtrA2 is also remarkable because, like bacterial PDZ domains, it is circularly permuted relative to mammalian PDZ domains. This likely reflects the bacterial ancestry of HtrA2.

Do PDZ domains hold the key to regulating HtrA proteases? PDZ domains are important in signal transduction and cellular organization. They bind an array of target proteins through small C-terminal motifs and play roles in the transport, localization, and assembly of these proteins [11]. What is their role in the HtrA proteases? In the cases of DegP and HtrA2, their role is probably not in the assembly of the oligomer, but in the recognition of short motifs for delivery to the proteolytic or chaperone activities of the protease domain. They also appear to act as modulators of activity. Deletion of the PDZ domains from DegP removed the catalytic activity but not the chaperone activity [2], whereas in HtrA2 deletion of the PDZ domain activated the protease [9]. To further understand the role of these domains, structures of complexes between HtrA proteins and substrates are required.

In conclusion, the crystal structures of DegP and HtrA2 have elegantly revealed the structural differences and similarities between these two proteins. However, many questions about their function remain unresolved. What is the function of HtrA2 in mitochondria? Does it perform the same role as DegP in E. coli? Is HtrA2 important for apoptotic function in vivo? It will be interesting to see whether HtrA2 knockout animals have a phenotype that resembles a mitochondrialopathy, suggesting that it is in the mitochondria that it has its primary role, or whether their phenotype resembles those of apaf-1 or caspase 9 knockouts, suggesting its primary role is to regulate cell death. HtrA2 can clearly interact with IAPs but the significance of this interaction is uncertain, as the protease activity is also required to fully induce apoptosis. Identification of the targets of the protease might provide clues as to the importance of HtrA2. Questions about the regulation of DegP also remain unresolved, although the structures allow hypotheses to be proposed and tested.

Serine protease HTRA2, mitochondrial is an enzyme that in humans is encoded by the HTRA2 gene. This gene encodes a serine protease. HtrA2, also known as Omi, is a mitochondrially-located serine protease. HtrA2 can be released from the mitochondria during apoptosis and uses its four most N-terminal amino acids to mimic a caspase and be recruited by IAP caspase inhibitors such as XIAP and CIAP1/2. Once bound, the serine protease cleaves the IAP, reducing the cell's inhibition to caspase activation. Additionally, HtrA2 has a PDZ domain, though little is known about its ability to bind PDZ binding motif peptides. HtrA2 has recently been identified as a gene related to Parkinson's disease. Mutations in Htra2 have been found in patients suffering from Parkinson's disease. Additionally, mice lacking HtrA2 have a parkinsonian phenotype. This suggests that HtrA2 is linked to Parkinson's disease progression in humans and mice.

HtrA2 shows similarities with DegS, a bacterial protease present in the periplasm of gram-negative bacteria. Structurally, HtrA2 is a trimeric molecule with central protease domains and carboxy-terminal PDZ domains.

What is LexA??


Repressor LexA or LexA is a repressor enzyme (EC 3.4.21.88) that represses SOS response genes coding for DNA polymerases required for repairing DNA damage. LexA is intimately linked to RecA in the biochemical cycle of DNA damage and repair. RecA binds to DNA-bound LexA causing LexA to cleave itself in a process called autoproteolysis.

DNA damage can be inflicted by the action of antibiotics. Bacteria require topoisomerases such as DNA gyrase or topoisomerase IV for DNA replication. Antibiotics such as ciprofloxacin are able to prevent the action of these molecules by attaching themselves to the gyrase - DNA complex. This is counteracted by the polymerase repair molecules from the SOS response. Unfortunately the action is partly counterproductive because ciprofloxacin is also involved in the synthetic pathway to RecA type molecules which means that the bacteria responds to an antibiotic by starting to produce more repair proteins. These repair proteins can lead to eventual benevolent mutations which can render the bacteria resistant to ciprofloxacin.

Mutations are traditionally thought of as happening as a random process and as a liability to the organism. Many strategies exist in a cell to curb the rate of mutations. Mutations on the other hand can also be part of a survival strategy. For the bacteria under attack from an antibiotic, mutations help to develop the right biochemistry needed for defense. Certain polymerases in the SOS pathway are error-prone in their copying of DNA which leads to mutations. While these mutations are often lethal to the cell, they can also lead to mutations which improve the bacteria's survival. In the specific case of topoisomerases, some bacteria have mutated one of their amino acids so that the ciproflaxin can only create a weak bond to the topoisomerase. This is one of the methods that bacteria use to become resistant to antibiotics.

Impaired LexA proteolysis has been shown to interfere with ciprofloxacin resistance.[1] This offers potential for combination therapy that combine quinolones with strategies aimed at interfering with the action of LexA either directly, or via RecA.